Estimating the Benefits of Electric Vehicle Smart Charging at Non-Residential Locations: A Data-Driven Approach
نویسندگان
چکیده
In this paper, we use data collected from over 2000 non-residential electric vehicle supply equipments (EVSEs) located in Northern California for the year of 2013 to estimate the potential benefits of smart electric vehicle (EV) charging. We develop a smart charging framework to identify the benefits of non-residential EV charging to the load aggregators and the distribution grid. Using this extensive dataset, we aim to improve upon past studies focusing on the benefits of smart EV charging by relaxing the assumptions made in these studies regarding: (i) driving patterns, driver behavior and driver types; (ii) the scalability of a limited number of simulated vehicles to represent different load aggregation points in the power system with different customer characteristics; and (iii) the charging profile of EVs. First, we study the benefits of EV aggregations behind-the-meter, where a time-ofuse pricing schema is used to understand the benefits to the owner when EV aggregations shift load from high cost periods to lower cost periods. For the year of 2013, we show a reduction of up to 24.8% in the monthly bill is possible. Then, following a similar aggregation strategy, we show that EV aggregations decrease their contribution to the system peak load by approximately 40% when charging is controlled within arrival and departure times. Our results also show that it could be expected to shift approximately 0.25kWh (∼2.8%) of energy per non-residential EV charging session from peak periods (12PM-6PM) to off-peak periods (after 6PM) in Northern California for the year of 2013.
منابع مشابه
A Smart Charging Method for Optimum Electric Vehicles Integration in the Distribution System in Presence of Demand Response Program
Electric vehicle charging in the distribution network is one of the common techniques for technical and economic management of energy distribution, which, if implemented properly, will bring several benefits such as reducing network peak load, charging costs reduction, loss minimization, and etc. In most traditional charging methods, the constraints of fully charging electric vehicles at depart...
متن کاملAn Advanced Data Driven Model for Residential Plug- in Hybrid Electric Vehicle Charging Demand
As the plug-in hybrid electric vehicle (PHEV) is becoming a very significant component in residential loads, an accurate and valid model for the PHEV charging demand is the key for load forecast, demand respond, system planning and so forth. As a result, we propose a data driven queuing model for residential PHEV charging demand by performing data analytics on smart meter measurements. The data...
متن کاملA Novel Charging Plan for PEVs Aggregator Based on Combined Market and Network Driven Approach
With the large-scale production of plug-in electric vehicles (PEVs), a new entity, the PEV fleet aggregator manages charging and discharging processes of the vehicles. The main objective of an individual aggregator in interaction with electricity markets is maximizing its profit. In this paper, the performance of this aggregator in day-ahead and real-time electricity markets, considering (a) cu...
متن کاملDifferent Electric Vehicle Charging Strategies to avoid Reducing the Insulation Oil Lifetime of Distribution Transformers
Abstract: The widespread presence of uncontrolled electric vehicles causes overloading of distribution network equipment. One of these equipments is distribution transformer, which should pay attention to overloading and reducing lifetime of this equipment due to charging of electric vehicles. First, strategies have been proposed to investigate the effect of electric vehicle penetration level a...
متن کاملEnergy cost minimization in an electric vehicle solar charging station via dynamic programming
Environmental crisis and shortage of fossil fuels make Electric Vehicles (EVs) alternatives for conventional vehicles. With growing numbers of EVs, the coordinated charging is necessary to prevent problems such as large peaks and power losses for grid and to minimize charging costs of EVs for EV owners. Therefore, this paper proposes an optimal charging schedule based on Dynamic Programming (DP...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1503.01052 شماره
صفحات -
تاریخ انتشار 2015